getIntersect() + $this->getSlope() * log($xValue - $this->xOffset); } /** * Return the X-Value for a specified value of Y. * * @param float $yValue Y-Value * * @return float X-Value **/ public function getValueOfXForY($yValue) { return exp(($yValue - $this->getIntersect()) / $this->getSlope()); } /** * Return the Equation of the best-fit line. * * @param int $dp Number of places of decimal precision to display * * @return string **/ public function getEquation($dp = 0) { $slope = $this->getSlope($dp); $intersect = $this->getIntersect($dp); return 'Y = ' . $intersect . ' + ' . $slope . ' * log(X)'; } /** * Execute the regression and calculate the goodness of fit for a set of X and Y data values. * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param bool $const */ private function logarithmicRegression($yValues, $xValues, $const) { foreach ($xValues as &$value) { if ($value < 0.0) { $value = 0 - log(abs($value)); } elseif ($value > 0.0) { $value = log($value); } } unset($value); $this->leastSquareFit($yValues, $xValues, $const); } /** * Define the regression and calculate the goodness of fit for a set of X and Y data values. * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param bool $const */ public function __construct($yValues, $xValues = [], $const = true) { if (parent::__construct($yValues, $xValues) !== false) { $this->logarithmicRegression($yValues, $xValues, $const); } } }